MySQL to Snowflake

This page provides you with instructions on how to extract data from MySQL and load it into Snowflake. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is MySQL?

MySQL is the world's most popular open source relational database management system (RDBMS). It's the data store for countless websites and applications; chances are you interact with MySQL-powered technology every day. MySQL is largely used as a transactional or operational database, and not as much for analytics.

What is Snowflake?

Snowflake is a cloud-based data warehouse that's fast, flexible, and easy to work with. It runs on Amazon Web Services EC2 and S3 instances, and separates compute and storage resources, enabling users to scale the two independently and pay only for resources used. Snowflake can natively load and optimize both structured and semi-structured data and make it available via SQL. It provides native support for JSON, Avro, XML, and Parquet data, and can provide access to the same data for multiple workgroups or workloads simultaneously with no contention roadblocks or performance degradation.

Getting data out of MySQL

MySQL provides several methods for extracting data; the one you use may depend upon your needs and skill set.

The most common way to get data out of any database is simply to write queries. SELECT queries allow you to pull the data you want. You can specifying filters and ordering, and limit results.

If you're looking to export data in bulk, there's an easier alternative. Most MySQL installs include a handy command-line tool called mysqldump that allows you to export entire tables and databases in a format you specify, including delimited text, CSV, or an SQL query that would restore the database if run.

Preparing data for Snowflake

You may need to prepare your data before loading it. Check Snowflake's supported data types and make sure that your data maps neatly to them.

Note that you won't need to define a schema in advance when loading JSON or XML data into Snowflake.

Loading data into Snowflake

Snowflake's documentation outlines a Data Loading Overview that can lead you through the task of loading your data. If you're not loading a lot of data, Snowflake's data loading wizard may be helpful, but for many organizations, its limitations make it unacceptable. Instead, you can:

  • Use the PUT command to stage files.
  • Use the COPY INTO table command to load prepared data into an awaiting table.

You can copy data from your local drive or from Amazon S3. Snowflake lets you make a virtual warehouse that can power the insertion process.

Keeping MySQL data up to date

The script you have now should satisfy all your data needs for MySQL – right? Not yet. How do you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow; if latency is important to you, it's not a viable option.

Instead, you can identify some key fields that your script can use to bookmark its progression through the data, and pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in MySQL.

Other data warehouse options

Snowflake is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, or PostgreSQL, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Postgres, and To Panoply.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your MySQL data via the API, structuring it in a way that is optimized for analysis, and inserting that data into your Snowflake data warehouse.